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Vertical Differencing and Conservationl

This note is a presentation of a vertical differencing system which
conserves

(1) mass

(2) potential temperature (6) and 02

(3) total energy.

The procedure for the derivation is that of Langlois and Kwok (1969) used
in describing Arakawa's system. However, we have used here a two-layer
model in pressure coordinates. The usual notation is used throughout.

We have ignored truncation errors in time and horizontal space.

The equations for an inviscid, adiabatic atmosphere in hydrostatic
balance are

::a= _ vo (1)
Bp

Xo= _ v.V - (2)
at Dp

3Ut = V_ u 'y-- + fv 3
Bt 3p ax

-Y =~ v t r -e fu (4)
.Bt -Pp By

1. Conservation of Mass

Integrate (1) for the continuous atmosphere from p = 0 to p p*,

the surface pressure.

fP* - dp = P- JP* V- dp

or

fP
= - V. fP dp + V*-V p*

1An error was made in previous note which led to energy conservation at
the expense of mass conservation. The main modification here is in the
way of converting the O-equation to a T-equation.

1



But * + Vp, . (5)
'at

Therefore

P* = V. JP* dp. (6)
at

Now consider the two-layer atmosphere

U=0. 0
:

0 _ _ ---- 1

2

* --------3

,77_7 * : 
For layer 1:

o ~P o
V.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-: * = ~0PaV-l ; ; (7)W2 = -P2 VV

For layer 3:

P W dp =V- I p V.Vdp
P2 BP P2

or

* - W2 = - V3(Pp2)V3 + -,Vp*

or

.ZP - .V - V.(p-p (8)
Thu maP2 se Ve(P*-P23v 

Thus mass is conserved for a closed system.
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: ~ 0 .~~~~
2. Potential Temperature

Multiply (2) by n-4.

at 4-Eg=_V1i}2 1at 
a~i n] - V.Linef a - [f enwj

Integrate over pressure for the continuous atmosphere

L JO* l *n)Vp* In P o )dp dP ,~j~ -P v. p ' (40 

+ - * V* Vp* n ** (9)

The underlined terms vanish due to (5).

Apply (2) to layer 1 of the two-layer atmosphere.

3 a dp - V-0 dp - I--- dp
o at o o ~P

~* ~or
aesl +

(10)=P2 at P2V 'V - 2 (10)

For layer 3:

7 fP* edp- d P * ap=* V= f* of dp- *.,-Vp-

8t P2 ~ - p

- [,*0* 2202}

Underlined terms vanish and we get

,pat>.:@ 5 =- v'((P*-P2)es3V + ,202 (11)

Notice that when we add (10) and (11), we get the finite difference form
of (9) with n=l no matter how we define 02. Thus e will be conserved
for a closed system.
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Now Multiply (0l-h.by ¢1 and (11) by 0'- and add result.
finally

1½ t{p2¢I + (P*-p2 3) = - P2 V0' , v - v. ((p*-p 2)03 V3)

P2v,,1(02(es-e z ) -½ e2 + el2).

In order that we get a finite difference form of (9) 'with n~2 so that
02 is conserved, the last term above must vanish. Thus,

02 = ½(0¢ + 03) (12)

3. Total Energy

The kinetic energy equation is

'K =_ V.(K+¢+) - a(K+4) + w p

Here K = ½(u 2+v2 ). Integrating over pressure for the continuous atmosphere
gives

a fP* K dp = - V. fP*(K+O)dp + fP * a' dp -_ P p* (13)
0 0 61 D~~~~~P a-t

Note that Tt fP* *dp = *
0 ~~~at

K
The equation for cpT can be obtained by using Ow = T and w = (P/Po) in
equation (2). We get

cp - = - cpV-T V - cp~ p-

Integrating over pressure in the continuous atmosphere gives finally

a fP* cpT dp = - V- fP cpT V dp - P* dp (14)
t o apo(14)

Add (13) and (14) to get total energy equation,

a fp*(K+*+cpT)dp = - v f *(K+O+cpT)V dp (15)
*
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In obtaining equations (10) and (11) for the layered atmosphere, we
have assumed something about the distribution of 0 and V within each
layer. Let us assume that both 8 and I are constant with respect to
pressure within each layer. Then we define T1 and T3 from

fP2 Tdp=
0

P2

0
8rdp e1K 2 TP 2

- 1+k P2 "2 - TlP2

f* Tdp = 83 fP* rdp

P2 P2

03

1-+K (P*r - P2' r2) = T3 (p* - P2),

1 E 'T2/(1+I)

.p *r - W* P** P2 2
TR3 - (1+:) (P .P2) I

Therefore, from (10) and (11) we get after multiplying through by cp:

D ~ ~ V~c~ 1 1-cw 
t(p 2cpT) = - V'P2CpT I p 2 2 1l

-((P- P2 )CpT3) = - V'((p*- p2 ) cpT3V 3)

+ cp(Tr,- 3) 03 * + V3-Vp*) + W2 2Cpc 3.

Add (16) and (17), and use (7) and (8). Then

Bt(P2CpTI + (
p *- P2)cpT3) = - V - V. (P*-P 2 )CpT 3V3 )

- (Cp (r 3 - rl)02 + Cp (T* -r3)63)P2V.V1

- Cp (W*-r3)6 3 (P*-P2)V'V3
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and

or

(16)

(17)

P2CpT1V1

(18)
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Now we form the momentum equations for the layered atmosphere.
For the u-equations, we integrate (3) from p=0 to P=p2 and then from

P=P2 to p=p*. We get finally

(P2u-) = Vo (P2ulV1) w2u2 - -x(P2pl) + fvlP2 (19)

t- V. ((~~~~~~~~~~P* *d3- ((P -P2)u3)= - V ((P*-P2)u3v 3) + w2U2 - 9X

+.fv3¢P*-P2} + P* 'Dx (20)+ fv3Cp*-P2Y + ~* (20

The v-equations are

-V.(p 2v 1VI) --2 y2 fu1P2 (21)Ut(P2Vl) = - _'PVv)~@V2~a(21 fulP2 ¢1

a(2( -p)v) =- V- ((p*-P2)v3 3) + w2v2 - ay(*-P2))

- fu 3 (p*-p2 ) + y (22)

From these equations we get the kinetic energy equation finally:

at{pKP2 + (p*-p2)K3) = - V-(p2KV 1 ) -V; ((p*-p2)K3V3)

- V¥'V(P2+l) - .V((p*-p2)+3) +* 3V P*

- p2 VI.(K,-K 3- (uu 2+v1v2-u2u 3-v2v 3) (23)

The last .term vanishes provided

V2 = 1 + ) (24)
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Now the total energy equation is obtained by adding (18)
We get finally

and (23).

't(P2El + (P*- P2)E3 + P) - V. (p2 (El+ ',c)i)

- V.((p*- p2)(E3+ 43) 3)

+ (+1- c Cp( r- )e2 - cp(%*- I3 )03 )p 2V.V 1
1 3 1 2 p 3 3~~~~~~~~

(25)

+ ( 3 - % - c (r*- 'r 3 ) 3) (p- P2)V-V3 .

Here E = K + c T.
P

In order that (25) represent a finite-difference form of (15), the

underlined terms must vanish. This is the case provided

a1+ 03

42 - c, -p 3-R 1 ) 2 - Cp(Jr,- 7 3)83 = 0
(26)

p3 - * cp(*,- 73)03 = 0

These are the forms of the hydrostatic equations which
in order that we properly conserve the total energy.

The final set of equations for the two-layer model is:

W2 =P2 V 'V /

at p2 VV 1 ~

(27)

must be used

- V.(p* - p~

a = - V*e v l - ½
- W2 (e01+03 )/P 2

U) = - Vu Vu1V - fvf - W2 (u+u 3)/p2at I'UI D- x + 2v -½ °2U+ 3) /P2

= - V~V+ f -
at = - V'vlIV - TY - fu1 - ½ W2 (Vl+V3 )/P 2

p.i ~3 0= - A.3V3 + ½ 2 (0el+03)/(p*-p2)
*r Tt . , at
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_ vus3_ -P*+- Vau u _ 3. 3 - (p3-p*) +
3 Dx (P*-p 2 ) ax

fv3 + ½ W2(ul+u3)/(P*-p2 )

= - V*v3V3 _-
at' 7y

- (3*) -+,
(P*-p2) ay

- fu3 + ½- W2(v 1l+v3)/(p*-p2)

1 = %3 + Cp(7r3- r1) (6 1 + 03)/2

P3 = ~, + Cp(W*- 73)83

Here

p,*T - P2r2
i3 (l+:)(p -p 2)

Notice the underlined terms in the momentum equations of layer 3. We see
that even in p-coordinates a nonlinear pressure gradient term exists--but
only in the layer above the ground. This term can be significant.

A problem exists when the hydrostatic equations are applied to real
data. For example, given the fields of surface pressure and temperatures,
the resulting geopotential heights are unrealistic. This problem can be
circumvented by applying the change predicted by the model to the initial
analyzed fields to get the predicted fields. This has been referred to in
NMC as the "tendency method" and is applied to the surface pressure field.

Why not also apply the "tendency method" to the variables in the
NMC operational models? This could add to the forecast skill, particularly
in the short range. Verification of such a method relative to the present
operational method might lead one to blend the two methods in time, such
that the tendency method would dominate in the early periods and gradually
give way to the present operational method in the longer ranges. Further-
more, statistical evaluations might guide us in how to blend the methods
in both space and time.

The vertical differencing system which has been
also be obtained for the NMC models in a-coordinates.
to evaluate the forecast skills of such a system with
here at NMC.

derived here can
It would be useful
those in general use
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Tm = T2/ (l+~,1)


